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ABSTRACT
This paper proposes a new method for computing page importance,
referred to as BrowseRank. The conventional approach to com-
pute page importance is to exploit the link graph of the web and
to build a model based on that graph. For instance, PageRank is
such an algorithm, which employs a discrete-time Markov process
as the model. Unfortunately, the link graph might be incomplete
and inaccurate with respect to data for determining page impor-
tance, because links can be easily added and deleted by web con-
tent creators. In this paper, we propose computing page impor-
tance by using a ’user browsing graph’ created from user behav-
ior data. In this graph, vertices represent pages and directed edges
represent transitions between pages in the users’ web browsing his-
tory. Furthermore, the lengths of staying time spent on the pages
by users are also included. The user browsing graph is more re-
liable than the link graph for inferring page importance. This pa-
per further proposes using the continuous-time Markov process on
the user browsing graph as a model and computing the stationary
probability distribution of the process as page importance. An effi-
cient algorithm for this computation has also been devised. In this
way, we can leverage hundreds of millions of users’ implicit voting
on page importance. Experimental results show that BrowseRank
indeed outperforms the baseline methods such as PageRank and
TrustRank in several tasks.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.5.4 [Information Interfaces and Presentation]:
Hypertext/Hypermedia.

General Terms
Algorithms, Experimentation, Theory
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1. INTRODUCTION
Page importance, which represents the ’value’ of an individual

page on the web, is a key factor for web search, because for con-
temporary search engines, the crawling, indexing, and ranking are
usually guided by this measure. Because the scale of the web is
extremely large and the web evolves dynamically, accurately cal-
culating the importance scores of web pages becomes critical, and
also poses a great challenge to search engines. In this paper, we
propose a new method for computing page importance, as our an-
swer to the challenge.

Currently, page importance is calculated by using the link graph
of the web and such a process is called link analysis. Well known
link analysis algorithms include HITS [15], PageRank[5, 18], and
others [4, 8, 9, 11, 12, 16, 17, 20]. Most of the algorithms assume
that if many important pages link to a page on the link graph, then
the page is also likely to be important, and they calculate the im-
portance of the page on the basis of a model defined on the link
graph. Link analysis algorithms have been successfully applied to
web search.

For example, PageRank employs a discrete-time Markov process
on the web link graph to compute page importance, which in fact
simulates a random walk along the hyperlinks on the web of a web
surfer. Although PageRank has its advantages, it also has certain
limitations as a model for representing page importance.

1. The link graph, which PageRank relies on, is not a very reli-
able data source, because hyperlinks on the web can be eas-
ily added or deleted by web content creators. For example,
purposely creating a large number of hyperlinks is a favorite
technique (e.g. link farm and link exchange) of web spam-
mers [7], and such kinds of hyperlinks are not suitable for
calculating page importance.

2. PageRank only models a random walk on the link graph, but
does not take into consideration the lengths of time which the
web surfer spends on the web pages during the random walk.
Such information can be a good indicator of the quality and
thus importance of the pages.
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Figure 1: User behavior data and browsing graph

To overcome these drawbacks, we consider using a more reliable
data source and employing a more powerful mathematical model.

The first question is whether we can find a better data source
than the link graph. Our answer is to utilize the user browsing
graph, generated from user behavior data.1 User behavior data can
be recorded by Internet browsers at web clients2 and collected at
a web server. An example of the data is shown in Figure 1. Each
record in the data contains the information of a visit by an anony-
mous user: URL, time, and method of visiting (URL input or hy-
perlink click from previous page). In our experiment, such data
was recorded and collected from an extremely large group of users
under legal agreements with them. Information which could be
used to recognize their identities was not included. By integrating
the data from hundreds of millions of web users, we can build a
user browsing graph, in which vertices represent web pages and di-
rected edges represent real transitions between web pages by users,
and furthermore the lengths of time spent on the pages by the users
are also included.

The user browsing graph can more precisely represent the web
surfer’s random walk process, and thus is more useful for calcu-
lating page importance. The more visits of the page made by the
users and the longer time periods spent by the users on the page, the
more likely the page is important. With this graph, we can leverage
hundreds of millions of users’ implicit voting on page importance.
In this regard, our approach is in accordance with the concept of
Web 2.0.3

The second question is what kind of algorithm we should use
to leverage the new data source. Obviously, the use of a discrete-
time Markov process would not be sufficient. In this paper, we
define a continuous-time Markov process [23] as the model on the
user browsing graph. If we further assume the process to be time-
homogenous (which is reasonable as discussed in Section 3), then
the stationary probability distribution of the process can be used
to define the importance of web pages. We employ the algorithm
referred to as BrowseRank, to efficiently compute the stationary
probability distribution of the continuous-time Markov process. We
make use of an additive noise model to represent the observations
with regard to the Markov process and to conduct an unbiased and
consistent estimation of the parameters in the process. In addition,
we adopt an embedded Markov chain based technology to speed up
the calculation of the stationary distribution. Hereafter, if there is
no confusion, we will call both the algorithm and the scores output
by the algorithm ’BrowseRank’.

Experimental results show that BrowseRank can achieve bet-
ter performance than existing methods, including PageRank and

1Note that it is also possible to combine link graph and user be-
havior data to compute page importance. We will not discuss more
about this possibility in this paper, and simply leave it as future
work.
2Web search engines such as Google, Yahoo, and Live Search pro-
vide client software called toolbars, which can serve the purpose.
3http://en.eikipedia.org/wiki/Web_2

TrustRank [8] in important page finding, spam page fighting, and
relevance ranking.

The novelty of this paper lies in the following points. First,
we propose using a user browsing graph, mined from user behav-
ior data for computing page importance, which is more reliable
and richer than a web link graph. Second, we propose using the
continuous-time Markov process to model a random walk on the
user browsing graph, which can more powerfully represent page
importance. Third, we propose an algorithm called BrowseRank to
efficiently compute page importance scores.

The rest of the paper is organized as follows. Section 2 intro-
duces related work. Section 3 describes the user browsing graph,
the continuous-time Markov process model, and the BrowseRank
algorithm. Experimental results are reported in Section 4. Conclu-
sion and future work are given in Section 5.

2. RELATED WORK
PageRank [5, 18] and HITS [15] are popular link analysis algo-

rithms in the literature. The basic idea of PageRank is as follows:
the link from a webpage to another can be regarded as an endorse-
ment of the linking page, the more links pointed to a page, the more
likely it is important, and this importance information can be prop-
agated across the vertices in the graph. A discrete-time Markov
process model which simulates a web surfer’s random walk on the
graph is defined and page importance is calculated as the stationary
probability distribution of the Markov process. HITS is based on
the notions of hub and authority to model the two aspects of impor-
tance of a webpage. A hub page is one from which many pages are
linked to, while an authority page is one to which many pages are
linked from. In principle, good hubs tend to link to good authori-
ties and vice versa. Previous study has shown that HITS performs
comparably to PageRank [1].

Many algorithms have been developed in order to further im-
prove the accuracies and efficiencies of PageRank. Some work fo-
cuses on speed-up of the computation [9, 17], while others focus
on refinement and enrichment of the model. For example, Topic-
sensitive PageRank [12] and query-dependent PageRank [20] have
been proposed. The basic idea of these algorithms is to intro-
duce topics and assume that the endorsement from a page that be-
longs to the same topic is larger. Other variations of PageRank
include those modifying the ’personalized vector’ [11], changing
the ’damping factor’ [4], and introducing inter-domain and intra-
domain link weights [16]. Besides, there is also work on theoretic
issues of PageRank [3] and [10]. Langville et al [16] provide a
good survey on PageRank and related work.

Link analysis algorithms that are robust against link spam have
been proposed. For example, TrustRank [8] is a link analysis tech-
nique which takes into consideration the reliability of web pages
when calculating the importance of pages. In TrustRank, a set of
reliable pages are first identified as seed pages. Then the trust of
the seed pages is propagated to other pages on the web link graph.
Since the propagation in TrustRank starts from the reliable pages,
TrustRank can be more spam-resistant than PageRank.

3. BROWSERANK

3.1 User Behavior Data
Many web service applications assist users in their accesses to

the web; sometimes they record user behaviors under agreements
with them.

When a user surfs on the web, she usually has some information
need. To browse a new page, the user may choose to click on the
hyperlink on another page pointing to it, or to input the URL of it



Table 1: Examples of user behavior data
URL TIME TYPE

http://aaa.bbb.com/ 2007-04-12, 21:33:05 INPUT
http://aaa.bbb.com/1.htm 2007-04-12, 21:34:11 CLICK

http://ccc.ddd.org/index.htm 2007-04-12, 21:34:52 CLICK
http://eee.fff.edu/ 2007-04-12, 21:39:03 INPUT

... ... ...

into the web browser. The user may repeat this until she finds the
information or gives up. The user behavior data can be recorded
and represented in triples consisting of <URL, TIME, TYPE> (see
Table 1 for examples). Here, URL denotes the URL of the web-
page visited by the user, TIME denotes the time of the visit, and
TYPE indicates whether the visit is by a URL input (INPUT) or by
a hyperlink click on the previous page (CLICK). The records are
sorted in chronological order.

From the data we extract transitions of users from page to page
and the time spent by users on the pages as follows:

1) Session segmentation
We define a session as a logical unit of user’s browsing. In this

paper we use the following two rules to segment sessions. First, if
the time of the current record is 30 minutes behind that of the pre-
vious record, then we will regard the current record as the start of
a new session [24]; otherwise, if the type of the record is ’INPUT’,
then we will regard the current record as the start of a new session.
We refer to the two rules as the time rule and the type rule hereafter.

2) URL pair construction
Within each session, we create URL pairs by putting together the

URLs in adjacent records. A URL pair indicates that the user tran-
sits from the first page to the second page by clicking a hyperlink.

3) Reset probability estimation
For each session segmented by the type rule, the first URL is di-

rectly input by the user and not based on a hyperlink. Therefore,
such a URL is ’safe’ and we call it green traffic4 . When process-
ing user behavior data, we regard such URLs as the destinations
of the random reset (when users do not want to surf along hyper-
links). We normalize the frequencies of URLs being the first one
in such sessions to get the reset probabilities of the corresponding
web pages.

4) Staying time extraction
For each URL pair, we use the difference between the time of the

second page and that of the first page as the observed staying time
on the first page. For the last page in a session, we use the follow-
ing heuristics to decide its observed staying time. If the session is
segmented by the time rule, we randomly sample a time from the
distribution of observed staying time of pages in all the records and
take it as the observed staying time 5. If the session is segmented
by the type rule, we use the difference between the time of the last
page in the session and that of the first page of the next session
(INPUT page) as the staying time.

By aggregating the transition information and the staying time
information extracted from the records by an extremely large num-
ber of users, we are able to build a user browsing graph (see Figure
1). Each vertex in the graph represents a URL in the user behavior
data, associated with reset probability and staying time as meta-
data. Each directed edge represents the transition between two

4In practice, users often visit web pages by typing the URLs of the
pages or selecting from bookmarks at web browsers. We call such
kind of visits green traffic, because the pages visited in this way are
safe, interesting, and/or important for the users.
5For the definition on the distribution of observed staying time,
please refer to Section 4.1.1.

vertices, associated with the number of transitions as its weight.
In other words, the user browsing graph is a weighted graph with
vertices containing metadata and edges containing weights. We
denoted it as G =< V,W,T, σ >, where V = {vi}, W = {wi j},
T = {Ti}, σ = {σi}, (i, j = 1, . . . ,N) denote vertices, weights of
edges, lengths of staying time, and reset probabilities, respectively.
N denotes the number of web pages in the user browsing graph.

3.2 Model
To better leverage the information on staying time, we propose

employing a continuous-time time-homogeneous Markov process
for representing a random walk on the user browsing graph.

3.2.1 Assumptions
When using the new model, we need to make the following as-

sumptions.
1) Independence of users and sessions
The browsing processes of different users in different sessions

are independent. In other words, we treat web browsing as a stochas-
tic process, with the data observed in each session by a user as
an i.i.d. sample of this process. This independence assumption is
widely used when one estimates parameters from observed data in
statistics.

2) Markov property
The page that a user will visit next only depends on the current

page, and is independent of the pages she visited previously. This
assumption is also a basic assumption in PageRank.

3) Time-homogeneity
The browsing behaviors of users (e.g. transitions and staying

time) do not depend on time points. Although this assumption is not
necessarily true in practice, it is mainly for technical convenience.
Note that this is also a basic assumption in PageRank.

Based on these assumptions, we can build a model of continuous-
time time-homogeneous Markov process to mimic a random walk
on the user browsing graph. In a similar way as in PageRank, the
stationary probability distribution of this process can be used to
measure the importance of pages.

3.2.2 Continuous-time Markov Model
Suppose there is a web surfer walking through all the webpages.

We use Xs to denote the page which the surfer is visiting at time
s, s > 0. Then, with the aforementioned three assumptions, the
process X = {Xs, s ≥ 0} forms a continuous-time time-homogenous
Markov process. Let pi j(t) denotes the transition probability from
page i to page j for time interval (also referred to as time increment
in statistics) t in this process. One can prove that there is a station-
ary probability distribution π, which is unique and independent of t
[23], associated with P(t) = [pi j(t)]N×N , such that for any t > 0,

π = π P(t) (1)

The ith entry of the distribution π stands for the ratio of the time
the surfer spends on the ith page over the time she spends on all
the pages when time interval t goes to infinity. In this regard, this
distribution π can be a measure of page importance.

In order to compute this stationary probability distribution, we
need to estimate the probability in every entry of the matrix P(t).
However, in practice, this matrix is usually difficult to obtain, be-
cause it is hard to get the information for all possible time intervals.
To tackle this problem, we propose a novel algorithm which is in-
stead based on the transition rate matrix [23]. The details of this
algorithm will be given in Section 3.3.

3.3 Algorithm



3.3.1 Overview
We make use of the transition rate matrix to compute the station-

ary probability distribution of P(t), as a measure of page impor-
tance. We call the corresponding algorithm as BrowseRank.

The transition rate matrix is defined as the derivative of P(t)
when t goes to 0, if it exists. That is, Q = P′(0). We call the
matrix Q = (qi j)N×N the Q-matrix for short. It has been proven that
when the state space is finite there is a one-to-one correspondence
between the Q-matrix and P(t), and −∞ < qii < 0;

∑
j qi j = 0[23].

Due to this correspondence, one also uses Q-Process to represent
the original continuous-time Markov process, that is, the browsing
process X = {Xs, s ≥ 0} defined before is a Q-Process because of
the finite state space.

There are two advantages of using the Q-matrix:

1. The parameters in the Q-matrix can be effectively estimated
from the data, according to the discussions in Section 3.3.2
and Section 3.3.3.

2. Based on the Q-matrix, there is an efficient way of computing
the stationary probability distribution of P(t), according to
the following theorem.

Before giving the theorem of how to efficiently compute the
stationary probability distribution of Q-process (Theorem 1), we
need to introduce a concept named embedded Markov chian (EMC)
[22]corresponding to a Q-process. The so-called EMC is a discrete-
time Markov process featured by a transition probability matrix
with zero values in all its diagonal positions and − qi j

qii
in the off-

diagonal positions, where all parameters qi j, i, j = 1, . . . ,N have
the same definitions as before.

T 1. Suppose X is a Q-process, and Y is the Embedded
Markov Chain derived from its Q-matrix. Let π = (π1, . . . , πN) and
π̃ = (π̃1, . . . , π̃N) denote the stationary probability distributions of
the process X and Y, then we have

πi =

π̃i
qii∑N

j=1
π̃ j
q j j

(2)

Refer to [22] for the proof of Theorem 1.
Note that the process Y is a discrete-time Markov chain, so its

stationary probability distribution π̃ can be calculated by many sim-
ple and efficient methods such as the power method [6].

Next we will explain how to estimate the parameters in the Q-
matrix, or equivalently parameter qii and the transition probabilities
− qi j

qii
(− qi j

qii
≥ 0 due to qii < 0) in the EMC.

3.3.2 Estimation of qii

According to [22], for a Q-Process, the staying time Ti on the ith

vertex is governed by an exponential distribution parameterized by
qii:

P(Ti > t) = exp(qii t) (3)

This implies that we can estimate qii from large numbers of obser-
vations on the staying time in the user behavior data.

This task is, however, non-trivial because the observations in the
user behavior data usually contain noise due to Internet connection
speed, page size, page structure, and other factors. In other words,
the observed values do not completely satisfy the exponential dis-
tribution 6. To tackle this challenge, we use an additive noise model
6Figure 2 shows the distribution of observed staying time, which is
not an exponential distribution, as we expected (see section 4.1.1).

to represent the observations and to conduct an unbiased and con-
sistent estimation of parameter qii.

Suppose for page i, we have mi observations on its staying time in
the user behavior data, denoted as Z1,Z2, . . . , Zmi , and they have the
same distribution as random variable Z. Without loss of generality,
we suppose that Z is the combination of real staying time Ti and
noise U, i.e.,

Z = U + Ti (4)

Suppose that noise U is governed by a Chi-square distribution as
Chi(k) 7, then its mean and variance will be k and 2k respectively.
Further suppose that the mean and variance of Z are µ and σ2. By
assuming U and Ti to be independent, we have [19]:

µ = E(Z) = E(U + Ti) = k − 1
qii

(5)

σ2 = Var(Z) = Var(U + Ti) = 2k +
1
q2

ii

(6)

Note that the sample mean Z̄ = 1
mi

∑mi
l=1 Zl and sample variance

S 2 = 1
mi−1

∑mi
l=1(Zl − Z̄)2are unbiased and consistent estimators for

µ and σ2 [19]. We then estimate qii by solving the following opti-
mization problem 8:

min
qii

((Z̄ + 1
qii

) − 1
2 (S 2 − 1

q2
ii
))2 (7)

s.t. qii < 0

3.3.3 Estimation of Transition Probability in EMC
Transition probabilities in the EMC describe the ’pure’ transi-

tions of the surfer on the user browsing graph. Estimation of them
can be based on the observed transitions between pages in the user
behavior data. It can also be related to the green traffic in the data.
We use the following method to integrate these two kinds of infor-
mation for the estimation.

We start with the user browsing graph G =< V,W,T, σ >. We
then add a pseudo-vertex (the (N + 1)th vertex ) to G, and add two
types of edges: the edges from the last page in each session to the
pseudo-vertex, associated with the click number of the last page as
its weight; and the edges from the pseudo-vertex to the first page
in each session, associated with the reset probability. We denote
the new graph as G̃ =< Ṽ , W̃,T, σ̃ >, where |Ṽ | = N + 1, σ̃ =<
σ̃1, . . . , σ̃N , 0 >. Then we explain the EMC model as the random
walk on this new graph G̃. Based on the law of large number [19],
the transition probabilities in the EMC are estimated as below,

−qi j

qii
=


α

w̃i j∑N+1
k=1 w̃ik

+ (1 − α)σ j, i ∈ V, j ∈ Ṽ

σ j, i = N + 1, j ∈ V
(8)

The intuitive explanation of the above transition is as follows. When
the surfer walks on the user browsing graph, she may go ahead
along the edges with the probability α, or choose to restart from a
new page with the probability (1 − α). The selection of the new
page is determined by the reset probability.

One advantage of using (8) for estimation is that the estima-
tion will not be biased by the limited number of observed transi-
tions. The other advantage is that the corresponding EMC is primi-
tive, and thus has a unique stationary distribution (see Theorem 2).
7Chi-square distribution is widely used to model additive noises
whose support is within [0,+∞).
8Note that to get this optimization problem, we actually solve k
from equation (5) and (6) respectively, and minimize the difference
between these two solutions. In this way, we can leverage both
mean and variance for parameter estimation.



Table 2: The BrowseRank algorithm
Input: the user behavior data.
Output: the page importance score π
Algorithm:
1. Construct the user browsing graph (see Section 3.1).
2. Estimate qii for all pages(see Section 3.3.2).
3. Estimate the transition probability matrix of the EMC

and then get its stationary probability distribution by
means of power method (see Section 3.3.3).

4. Compute the stationary probability distribution of the
Q-process by using of equation (2).

Therefore, we can use the power method to calculate this stationary
distribution in an efficient manner.

T 2. Suppose X is a Q-process and Y is its EMC. If the
entries in the transition probability matrix P̃ = (p̃i j) of Y are de-
fined as in equation (8), the process Y is primitive, i.e., the transi-
tion graph of process Y is strongly connected (which means there
is a directed path from any node to any other node in the graph).

Refer to the appendix for the proof of Theorem 2.
In summary, we get the flow chart of BrowseRank as Table 2.

4. EXPERIMENTAL RESULTS
We have conducted experiments to verify the effectiveness of the

proposed BrowseRank algorithm. We report the experimental re-
sults in this section. The first experiment was conducted at the
website level, to test the performance of BrowseRank on finding
important websites and depressing spam sites. The second experi-
ment was conducted at the webpage level, to test the effectiveness
of BrowseRank on improving relevance ranking.

4.1 Website-Level BrowseRank

4.1.1 Dataset and Baselines
We used a user behavior dataset, collected from the World Wide

Web by a commercial search engine in the experiments. All possi-
ble privacy information was rigorously filtered out and the data was
sampled and cleaned to remove bias as much as possible. There
are in total over 3-billion records, and among them there are 950-
million unique URLs. The distribution of the observed staying time
of one web page randomly selected from a part of the dataset in
which all web pages have a large number of observations is shown
in a log-linear scale in Figure 29. From the figure, we can see that
the curve is not straight at the beginning, indicating that it does not
follow an exact exponential distribution. This validates our argu-
ments on the noisy observations on the staying time.

When running BrowseRank at website-level, we did not distin-
guish web pages in the same website. That is, we ignored the tran-
sitions between the pages in the same website and aggregated the
transitions from (or to) the pages in the same website. As a re-
sult, we created a user browsing graph at website-level, consisting
of 5.6-million vertices and 53-million edges. We also obtained a
link graph containing the 5.6-million websites from the commer-
cial search engine. There are in total 40-million websites in this
link graph. We computed PageRank and TrustRank from it as base-
lines.

4.1.2 Top-20 Websites
We listed the top-20 websites ranked by using different algo-

rithms in Table 3. From this table, we can make the following
observations:
9We plot the top 100 seconds graph to show the curve clearly.
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Figure 2: The distribution of the observed staying time

First, BrowseRank tends to give high ranks to Web 2.0 web-
sites (marked in bold) such as myspace.com, youtube.com, face-
book.com. The reason is that web users visit these websites with
high frequencies and often spend much time on them, even if they
do not have as many inlinks as Web 1.0 websites like adobe.com
and apple.com do. Note this reflects users’ real information needs.

Second, some websites like adobe.com are ranked very high by
PageRank. One reason is that adobe.com has millions of inlinks for
Acrobat Reader and Flash Player downloads. However, web users
do not really visit such websites very frequently and they should
not be regarded more important than the websites on which users
spend much more time (like myspace.com and facebook.com).

Third, the ranking results produced by TrustRank are similar
to PageRank. The difference is that the well-known websites are
ranked higher by TrustRank than by PageRank, mainly because
these websites are likely to be included or pointed to by websites
in the seed set.

In summary, the ranking results given by BrowseRank seem to
better represent users’ preferences than PageRank and TrustRank.

4.1.3 Spam Fighting
We randomly sampled 10,000 websites from the 5.6 million web-

sites and asked human experts to make spam judgments on them.
2,714 websites are labeled as spam and the rest are labeled as non-
spam.

We used the spam bucket distribution to evaluate the perfor-
mances of the algorithms. Given an algorithm, we sorted the 5.6-
million websites in descending order of the scores that the algo-
rithm produces. Then we put these sorted websites into 15 buck-
ets. This experiment is similar to the experiments in [8]. The
numbers of the labeled spam websites over buckets for PageRank,
TrustRank, and BrowseRank are listed in Table 4.

We see that BrowseRank can successfully push many spam web-
sites to the tail buckets, and the number of spam websites in the top
buckets in BrowseRank is smaller than PageRank and TrustRank.
That is to say, BrowseRank is more effective in spam fighting than
PageRank and TrustRank. The reasons that BrowseRank outper-
forms the other algorithms are as follows:

1) Creating inlinks, which can hurt PageRank, cannot hurt BrowseR-
ank so much, because the link information is not used in BrowseR-
ank.

2) The performance of TrustRank can be affected by the selection
of the seed set and the determination of the seed distribution in the
link graph. For BrowseRank, seed selection and seed distribution
determination are not necessary.

Furthermore, the performance of TrustRank is better than PageR-
ank, which is consistent with the result obtained in previous work
[8].



Table 3: Top 20 websites by three different algorithms
No. PageRank TrustRank BrowseRank
1 adobe.com adobe.com myspace.com
2 passport.com yahoo.com msn.com
3 msn.com google.com yahoo.com
4 microsoft.com msn.com youtube.com
5 yahoo.com microsoft.com live.com
6 google.com passport.net facebook.com
7 mapquest.com ufindus.com google.com
8 miibeian.gov.cn sourceforge.net ebay.com
9 w3.org myspace.com hi5.com

10 godaddy.com wikipedia.org bebo.com
11 statcounter.com phpbb.com orkut.com
12 apple.com yahoo.co.jp aol.com
13 live.com ebay.com friendster.com
14 xbox.com nifty.com craigslist.org
15 passport.com mapquest.com google.co.th
16 sourceforge.net cafepress.com microsoft.com
17 amazon.com apple.com comcast.net
18 paypal.com infoseek.co.jp wikipedia.org
19 aol.com miibeian.gov.cn pogo.com
20 blogger.com youtube.com photobucket.com

4.2 Page-Level BrowseRank

4.2.1 Ranking in Web Search
In web search engines, the retrieved web pages for a given query

are often ranked based on two factors: relevance rank and impor-
tance rank. A linear combination of these two ranking lists is then
created [2]:

θ × rankrelevance + (1 − θ) × rankimportance (9)

Here 0 ≤ θ ≤ 1 is the combining parameter.

4.2.2 Dataset
Again, we used the user behavior data and the link graph. This

time we ran all the algorithms at the page level.
In addition, we also obtained a large dataset from the same search

engine, containing 8000 queries and their associated webpages. For
the associated webpages of each query, three researchers in web
search were hired to independently score each page’s relevancy to
the given query (1 - relevant, 0 - irrelevant). These scores were
then summed, with pages having total scores of at least 2 labeled
as relevant, and the others marked as irrelevant. This dataset has
been preprocessed, and spam pages within it have been removed in
advance. Therefore, it is not necessary to evaluate TrustRank on
this dataset, and we only take PageRank as baseline. We reserve
the webpages which are in this dataset and also appear in the user
behavior data for the experiment.

4.2.3 Results
In this experiment, we compared the performances on ranking

using PageRank and BrowseRank as the page importance models
for ranking. BM25 [21]was used as the relevance model for rank-
ing.

We adopted three measures to evaluate the ranking performances:
MAP [2], Precision (P@n) [2], and Normalized Discount Cumula-
tive Gain (NDCG@n) [13, 14]. The experimental results are pre-
sented in Figures 3 to 9.

From the figures, we can see that BrowseRank consistently out-
performs PageRank in all parameter settings in terms of all eval-
uation measures. For example, from Figure 7, we can see that

Table 4: Number of spam websites over buckets
Bucket Number of PageRank TrustRank BrowseRankNo. Websites

1 15 0 0 0
2 148 2 1 1
3 720 9 11 4
4 2231 22 20 18
5 5610 30 34 39
6 12600 58 56 88
7 25620 90 112 87
8 48136 145 128 121
9 87086 172 177 156

10 154773 287 294 183
11 271340 369 320 198
12 471046 383 366 277
13 819449 434 443 323
14 1414172 407 424 463
15 2361420 306 328 756

NDCG@5 of BM25 is 0.853 (when θ = 1), BrowseRank hits its
peak NDCG@5 value of 0.876 when θ = 0.70, and the peak NDCG@5
value of PageRank is 0.862 when θ = 0.80.

We also conducted t-tests at a confidence level of 95%. In terms
of MAP, the improvement of BrowseRank over PageRank is sta-
tistically significant with a p-value of 0.0063. In terms of P@3,
P@5, NDCG@3, and NDCG@5, the improvements are also statis-
tically significant with p-values are 0.00026, 0.0074, 3.98 × 10−7,
and 3.57 × 10−6, respectively.
4.2.4 Discussion

To further understand the user behavior data and our proposed
algorithm, we consider two simple algorithms that also use user
behavior data or user browsing graphs: PageRank-UBG (weighted
PageRank computed on the user browsing graph), and Naive BrowseR-
ank (product of the number of clicks and average observed staying
time).

Based on the experimental results given in Figures 8, 9, and 10,
we can make the following observations:

1. Both simple methods can also outperform PageRank, as can
be seen from the comparing Figures 3, 5 and 7 with Figures
8, 9, and 10. This seems to indicate that the user browsing
graph is more reliable and effective than the link graph, as a
data source to compute page importance.

2. NaiveBR performs better than PageRank-UBG. This is rea-
sonable since PageRank-UBG only makes use of the transi-
tion information in the user browsing graph, while in addi-
tion to the transition information NaiveBR also utilizes the
information on staying time.

3. BrowseRank consistently performs better than the simple al-
gorithms. This indicates that the model and algorithm we
propose are more effective than the simple methods.

5. CONCLUSION AND FUTURE WORK
In this paper, we have pointed out that a web link graph is not a

reliable data source for computing page importance. Furthermore,
existing link analysis algorithms like PageRank are also too simple
to infer page importance. To deal with these problems, we propose
using user behavior data to mine a user browsing graph, building a
continuous-time Markov process model on the graph, and employ-
ing an efficient algorithm to calculate page importance scores with
the model.
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BrowseRank and PageRank
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The user browsing graph data is more reliable and richer than the
conventional link graph data, and furthermore the continuous-time
Markov model is more powerful than the existing models. Thus the
use of them will result in more accurate results in page importance
calculation. We name the new algorithm BrowseRank. Our exper-
imental results show that BrowseRank outperforms PageRank and
TrustRank in two web search tasks, indicating that the proposed
approach really does have the stated advantages.

There are still several technical issues which need to be addressed
as future work:

1) User behavior data tends to be sparse. The use of user behav-
ior data can lead to reliable importance calculation for the head web
pages, but not for the tail web pages, which have low frequency or
even zero frequency in the user behavior data. One possibility is to
use the link graph to conduct some smoothing. We need to find a
principled way to deal with this problem.

2) The assumption on time homogeneity is made mainly for tech-
nical convenience. We plan to investigate whether we can still ob-
tain an efficient algorithm if this assumption is withdrawn.

3) The content information and metadata was not used in BrowseR-
ank. However, in general, a larger page often means longer staying
time. We will take the metadata like page size into consideration to
normalize the user staying time in the next version.
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APPENDIX
Proof of Theorem 2

We prove the theorem by showing that there is a directed path
in the transition graph between any two pages. As for the user
browsing graph, we have the following three observations:

1) For the reset probability, we haveσi ≥ 0,for any i = 1, 2, . . . ,N.
Suppose that among them there are T entries that are strictly pos-
itive. Without loss of generality, we regard the first T entries as
such, i.e., σi > 0,for any i = 1, 2, . . . , T . In other words, all ses-
sions begin with the first T pages.

2) Since all the pages in the state space V come from the user
behavior data, any page will belong to a session.

3) A session corresponds to a path in the transition graph: from
the first page in a session, there is a path to all the other pages in
the same session.

For any i, j ∈ V , based on the second observation, we assume
that page i is in the session whose first page is bi, and page j is in
the session whose first page is b j.

If page i is the last page in the session, then according to the
reset rule and the first observation, there will be a transition path
from it to page b j with the probability σb j > 0. Then based on the
third observation, a path can be found from page b j to page j. As a
result, there is a directed path from page i to page j.

If page i is not the last page in its session, based on the third ob-
servation, there will be a path from i to the last page in that session.
Since there is a path from the last page in that session to page j, as
proved above, we actually can come to the conclusion that there is
a direct path from page i to page j.


